Fluorescence Resonance Energy Transfer Imaging Reveals that Chemokine-Binding Modulates Heterodimers of CXCR4 and CCR5 Receptors
نویسندگان
چکیده
BACKGROUND Dimerization has emerged as an important feature of chemokine G-protein-coupled receptors. CXCR4 and CCR5 regulate leukocyte chemotaxis and also serve as a co-receptor for HIV entry. Both receptors are recruited to the immunological synapse during T-cell activation. However, it is not clear whether they form heterodimers and whether ligand binding modulates the dimer formation. METHODOLOGY/PRINCIPAL FINDINGS Using a sensitive Fluorescence Resonance Energy Transfer (FRET) imaging method, we investigated the formation of CCR5 and CXCR4 heterodimers on the plasma membrane of live cells. We found that CCR5 and CXCR4 exist as constitutive heterodimers and ligands of CCR5 and CXCR4 promote different conformational changes within these preexisting heterodimers. Ligands of CCR5, in contrast to a ligand of CXCR4, induced a clear increase in FRET efficiency, indicating that selective ligands promote and stabilize a distinct conformation of the heterodimers. We also found that mutations at C-terminus of CCR5 reduced its ability to form heterodimers with CXCR4. In addition, ligands induce different conformational transitions of heterodimers of CXCR4 and CCR5 or CCR5(STA) and CCR5(Delta4). CONCLUSIONS/SIGNIFICANCE Taken together, our data suggest a model in which CXCR4 and CCR5 spontaneously form heterodimers and ligand-binding to CXCR4 or CCR5 causes different conformational changes affecting heterodimerization, indicating the complexity of regulation of dimerization/function of these chemokine receptors by ligand binding.
منابع مشابه
Multiplex Detection of Homo- and Heterodimerization of G Protein-Coupled Receptors by Proximity Biotinylation
Dimerization of G protein-coupled receptors (GPCRs) represents a potential mechanism by which GPCR functions are regulated. Several resonance energy transfer (RET)-based methods have revealed GPCR homo- and heterodimerization. However, interpretation of an increase in FRET efficiency could be attributed to either dimerization/oligomerization events or conformational changes within an already di...
متن کاملEvidence for negative binding cooperativity within CCR5-CCR2b heterodimers.
It is well established that most G protein-coupled receptors are able to form homo- and heterodimers, although the functional consequences of this process often remain unclear. CCR5 is a chemokine receptor that plays an important role in inflammatory diseases and acts as a major coreceptor for human immunodeficiency viruses. CCR5 was previously shown to homodimerize and heterodimerize with CCR2...
متن کاملIdentification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes.
BACKGROUND AND PURPOSE The C-X-C chemokine receptors 3 (CXCR3) and C-X-C chemokine receptors 4 (CXCR4) are involved in various autoimmune diseases and cancers. Small antagonists have previously been shown to cross-inhibit chemokine binding to CXCR4, CC chemokine receptors 2 (CCR2) and 5 (CCR5) heteromers. We investigated whether CXCR3 and CXCR4 can form heteromeric complexes and the binding cha...
متن کاملHetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of "selective" antagonists.
Chemokine receptors constitute an attractive family of drug targets in the frame of inflammatory diseases. However, targeting specific chemokine receptors may be complicated by their ability to form dimers or higher order oligomers. Using a combination of luminescence complementation and bioluminescence resonance energy transfer assays, we demonstrate for the first time the existence of hetero-...
متن کاملClosely related, yet unique: Distinct homo- and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol
Chemokine receptors, a subclass of G protein coupled receptors (GPCRs), play essential roles in the human immune system, they are involved in cancer metastasis as well as in HIV-infection. A plethora of studies show that homo- and heterodimers or even higher order oligomers of the chemokine receptors CXCR4, CCR5, and CCR2 modulate receptor function. In addition, membrane cholesterol affects che...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008